

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			9701/32
Paper 3 Advan	ced Practical Skills 2		May/June 2015
			2 hours
Candidates ans	wer on the Question Paper.		

MODIFIED LANGUAGE

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

As listed in the Confidential Instructions

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Additional Materials:

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Exam	iner's Use
1	
2	
3	
Total	

This document consists of 10 printed pages and 2 blank pages.

1 In this question you will determine the percentage purity of a sample of contaminated sodium carbonate. **FB 1** is a solution of the contaminated sodium carbonate. You will first dilute **FB 1** and then titrate the diluted solution using hydrochloric acid.

$$2HCl(aq) + Na_2CO_3(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$$

FB 1 was prepared by dissolving 125 g of contaminated sodium carbonate, Na_2CO_3 , in distilled water and making the solution up to $1 \, dm^3$.

FB 2 is $0.100\,\mathrm{mol\,dm^{-3}}$ hydrochloric acid, HC *l*. methyl orange indicator

(a) Method

Dilution

- Fill the burette with **FB 1**.
- Run between 13.00 and 13.50 cm³ of **FB 1** into the 250 cm³ volumetric (graduated) flask. Record the volume in the space below.

volume of **FB 1** = cm³

- Fill the volumetric flask to the line with distilled water. Stopper the flask and shake it to ensure thorough mixing.
- Label this flask **FB 3**.

Titration

- Rinse the burette thoroughly with distilled water and then with a little of solution FB 2.
- Fill the burette with **FB 2**.
- Use the pipette to transfer 25.0 cm³ of **FB 3** into a conical flask.
- Add 5-10 drops of methyl orange indicator.
- Perform a **rough titration** and record your burette readings in the space below.

The rough titre is cm³.

- Do as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.

Record in a suitable form below all of your burette readings and the volume of FB 2
added in each accurate titration.

I
II
III
IV
V
VI
VII
VIII

[8]

(b)		m your accurate titration results, obtain a suitable value to be used in your calculations. ow clearly how you obtained this value.
		25.0 cm ³ of FB 3 required cm ³ of FB 2 . [1]
(c)	Cal	culations
		ow your working and appropriate significant figures in the final answer to each step of your culations.
	(i)	Calculate the number of moles of hydrochloric acid present in the volume of FB 2 calculated in (b) .
		moles of HC1 = mol
	(ii)	Calculate the number of moles of sodium carbonate present in 25.0 cm³ of FB 3 .
		moles of Na ₂ CO ₃ = mol
	(iii)	Calculate the concentration, in mol dm ⁻³ , of sodium carbonate in FB 3 .
		concentration of Na ₂ CO ₃ in FB 3 = mol dm ⁻³
	(iv)	Calculate the concentration, in mol dm ⁻³ , of sodium carbonate in FB 1 .
		concentration of Na ₂ CO ₃ in FB 1 = mol dm ⁻³
	(v)	Calculate the percentage purity by mass of the sodium carbonate in the contaminated sample used to prepare solution FB 1 . (A_r : C, 12.0; O, 16.0; Na, 23.0)
	-	percentage purity by mass = % [5]
	_	[Total: 14]

I

II

III

IV

2 In this experiment you will determine the percentage by mass of magnesium in a mixture of magnesium and iron. To do this you will measure the heat given out by the reaction of the mixture with excess hydrochloric acid. You should assume that only the magnesium in the mixture will react with the acid.

FB 4 is the mixture of magnesium and iron.

FB 5 is 2.00 mol dm⁻³ hydrochloric acid, HC*l*.

(a) Method

Read through the instructions carefully and prepare a table below for your results before starting any practical work.

- Support the plastic cup in a 250 cm³ beaker.
- Use the measuring cylinder to transfer 40 cm³ of **FB 5** into the plastic cup.
- Weigh the stoppered container with the **FB 4** and record the mass.
- Measure and record the initial temperature of the solution in the plastic cup.
- Add all the sample of **FB 4** to the acid in the plastic cup carefully to minimise acid spray.
- Stir the mixture and record the maximum temperature that is reached.
- Weigh the stoppered container and any residual metal mixture. Record the mass.
- Record the mass of metal added to the acid.

I	
II	
III	
IV	

[4]

(b) Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i)	Use your value for the maximum temperature rise to calculate the heat energy produced
	in the reaction.
	(Assume that 4.2 J are required to increase the temperature of 1.0 cm ³ of solution by

(Assume that **4.2 J** are required to increase the temperature of $1.0\,\text{cm}^3$ of solution by $1.0\,^\circ\text{C.}$)

heat energy produced =	J
neat energy produced =	

(ii)	The molar enthalpy change, ΔH , for the reaction shown below is $-457 \mathrm{kJ}\mathrm{mol}^{-1}$.
	$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
	Use this value and your answer to (i) to calculate the number of moles of magnesium in your reaction.
	moles of Mg = mol
(iii)	Use your answer to (ii), to calculate the percentage by mass of magnesium in FB 4 . (A_r : Mg, 24.3)
	percentage by mass of Mg in FB 4 = %
(iv)	You have assumed that only the magnesium reacts with the acid. What other assumption have you made in using this method to determine the percentage by mass of magnesium in the mixture?
	[4]
(c) (i)	Calculate the maximum percentage error in the temperature rise.
	maximum percentage error = %
(ii)	Using the same FB 4 , the same FB 5 and no additional apparatus, describe how you could modify the experiment to reduce this maximum percentage error in the temperature rise. Explain your answer.
	[3]
	[Total: 11]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate** place in your observations.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

- (a) FB 6 is a solution containing two cations and one anion. Both of the cations are listed in the Qualitative Analysis Notes on page 10.
 - (i) Select reagents to identify the cations in **FB 6**. Do tests using these reagents and record your results in the space below.

The cations in FR 6 are	and	

(-		n, NO ₃ ⁻ . Explain why it is difficult to confirm the 3 using the method outlined in the Qualitative Analysis
			[6]
to a	ppro	tarting part (b), half fill a 250 cn ximately 60°C. You will use this the Bunsen burner.	n ³ beaker with water and heat with a Bunsen burner s as a hot water bath.
(b)	FB 7	is a halogenoalkane. Do the follo	owing test to determine the halogen present in FB 7 .
		test	observations
	(i)	To a 1 cm depth of ethanol in a test-tube, add a 1 cm depth of silver nitrate followed by 10 drops of FB 7 , then	
		place the test-tube in the hot water bath.	
		-	
	(ii)	What type of reaction has the hal	ogenoalkane undergone?
			[4]

(c) FB 8 and FB 9 each contain a single cation and a single anion. Do the following tests and record your observations.

	test	observations
(i)	To a 1 cm depth of FB 8 in a test-tube, add FB 9 until there is no further reaction, then	
	add aqueous barium chloride or aqueous barium nitrate.	

(ii)	Suggest possible identities for the ions present. You will only be able to identify one of the cations.
	cation

anions

[5]

[Total: 15]

BLANK PAGE

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with		
	NaOH(aq)	NH ₃ (aq)	
aluminium, Al³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on heating	_	
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess	
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess	
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess	

2 Reactions of anions

ion	reaction	
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids	
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))	
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))	
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))	
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil	
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)	
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)	
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)	

3 Tests for gases

gas	test and test result	
ammonia, NH ₃	turns damp red litmus paper blue	
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)	
chlorine, Cl ₂	bleaches damp litmus paper	
hydrogen, H ₂	"pops" with a lighted splint	
oxygen, O ₂	relights a glowing splint	
sulfur dioxide, SO ₂	turns acidified aqueous potassium manganate(VII) from purple to colourless	

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.